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Off-Policy RL

Evaluate and update one policy while following another
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Batch RL

e “Growing batch RL”
o Algorithm is learning from earlier trajectories that it collected
e In Batch RL, the data could be completely uncorrelated with the current policy
o High extrapolation error between the dataset policy and the current policy
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Related Works in Deep RL

e Many SOTA RL algorithms are off-policy:

o DDPG
o DQN
o IMPALA

e Imitation Learning

e (Catastrophically fail when exposed to the ‘Batch RL’ problem

o High ‘extrapolation error’ between the current and behavioral policy
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Algorithm

e Authors suggest high “extrapolation error” in existing

approaches:

o Visitation of state, action pairs that aren’t similar to

the ones found in the dataset / / \

m Poor Q estimates X X
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e The algorithm restricts the target policy to be similar to
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Batch Constrained Q-Learning (BCQ)

e Based on the DQN algorithm

e BCQ uses a generative model to generate highly plausible/similar actions to the dataset
o Use a conditional VAE which encodes the state and generates actions
o Perturb the selected actions of the VAE using

e This gives us the following for the policy:

7(8) = argmax Qg (3,ai + £€4(8, ai, <I>)) {ai ~ G,(s)}1,

a;+€5(8,ai,®) T [
] Random
perturbation Actions sampled from

Q-value conditional-VAE
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Experimental Setup

e Analyze results from OpenAl Gym MuJoCo’s HalfCheetah, Hopper, and Walker2d
environments
e Test on 4 kinds of Batch RL:

o Final buffer

o Concurrent
o Imitation Learning

o Imperfect demonstrations
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Discussion of Results

e BCQ outperforms on experiments that are outside of the conventional ‘growing

batch-RL’ setup.

e Situations where the dataset can differ greatly from the current policy results in failure

for DDPG and DQN

e BCQ can perform similarly to imitation learning algorithms as well as off-policy RL

algorithms

e BCQ outperforms DDPG or DQN when learning from data generated by DDPG or DQN
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Open Issues

e Bound by the performance of the behavioral policy of the dataset

e Doesn’t address the problem of data generated with bad policies (such as random actors)
o Lack of exploration leads to just cloning the behavioral policy, without exceeding its

performance

e Value based
o Bad/random values learned for state-actions with poor visitation

o Difficult to learn for
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Future Work for Paper / Reading

e Model-based approaches
o Using the dataset to learn dynamics of the MDP (ie transition function)
o Capture uncertainties of learned model using probabilistic modeling
o Maximize expected return using a model-free algorithm (DQN, PPO) in the learned
dynamics system
e Inverse RL
o Learn the reward function R(s, a) from the data. Pick actions that maximize the

learned function.
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Extended Readings

e ‘“Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning
from Observations”
o Use a ‘ranking’ of demonstrations to learn a reward functions
o Achieve performance greater than the demonstrations
e “Scaling Data-driven Robotics with Reward Sketching and Batch Reinforcement
Learning”
o Use of ‘reward sketching’, which takes a subset of the dataset and uses human
input to ‘sketch’ and idea of what the reward for those states are

o Use BCQ with these sketched rewards to achieve better performnce
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Summary

e Introduced the problem of Batch RL, learning a policy from a dataset of trajectories
e Prior work only focuses on ‘offline RL’, which learns from trajectories produced by earlier iterations
of the model.
o DDPG and DQN perform badly when training on data that is very different from the policy

e BCAQ uses a VAE to produce actions similar to the dataset behavioral policy, constraining the agent

e BCQ outperforms DDPG, DQN at all baseline tasks, while performing better than BC in adversarial

task for imitation learning.
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